3D Printing GMP/Regulatory
Ramaraju, H., Landry, A. M., Sashidharan, S., Shetty, A., Crotts, S. J., Maher, K. O., … & Hollister, S. J. (2022). Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support. Biomaterials, 289, 121702. doi: https://doi.org/10.1016/j.biomaterials.2022.121702
Ramaraju, H., Pithadia, K., Crotts, S. J., Flanagan, C. L., Green, G. E., & Hollister, S. J. (2021). Evaluating Directional Dependency of Selective Laser Sintered Patient Specific Biodegradable Devices to Improve Predictive Modeling and Design Verification. Annals of Biomedical Engineering, 49(9), 2579-2589. doi: https://doi.org/10.1007/s10439-021-02835-7
Hollister, S. J., Crotts, S. J., Ramaraju, H., Flanagan, C. L., Zopf, D. A., Morrison, R. J., … & Green, G. E. (2018). Quality Control of 3D Printed Resorbable Implants: The 3D Printed Airway Splint Example. Ovsianikov, A., Yoo, J., Mironov, V.(Eds.), 3, 131-160. doi: https://doi.org/10.1007/978-3-319-40498-1_24-1
Hollister, S. J., Flanagan, C. L., Morrison, R. J., Patel, J. J., Wheeler, M. B., Edwards, S. P., & Green, G. E. (2016). Integrating image-based design and 3D biomaterial printing to create patient specific devices within a design control framework for clinical translation. ACS biomaterials science & engineering, 2(10), 1827-1836. doi: https://doi.org/10.1021/acsbiomaterials.6b00332
Morrison, R. J., Kashlan, K. N., Flanangan, C. L., Wright, J. K., Green, G. E., Hollister, S. J., & Weatherwax, K. J. (2015). Regulatory considerations in the design and manufacturing of implantable 3D‐printed medical devices. Clinical and translational science, 8(5), 594-600. doi: https://doi.org/10.1111/cts.12315
Hollister, S. J., Flanagan, C. L., Zopf, D. A., Morrison, R. J., Nasser, H., Patel, J. J., … & Green, G. E. (2015). Design control for clinical translation of 3D printed modular scaffolds. Annals of biomedical engineering, 43, 774-786. doi: https://doi.org/10.1007/s10439-015-1270-2
Pediatric/Adult Airway Reconstruction/Regenerative Medicine
Michaels, R., Ramaraju, H., Crotts, S. J., Hollister, S. J., & Zopf, D. A. (2021). Early preclinical evaluation of a novel, computer aided designed, 3D printed, bioresorbable posterior cricoid scaffold. International Journal of Pediatric Otorhinolaryngology, 150, 110892. https://doi.org/10.1016/j.ijporl.2021.110892
Morrison, R. J., Sengupta, S., Flanagan, C. L., Ohye, R. G., Hollister, S. J., Green, G. E. (2017). Successful treatment of severe acquired tracheomalacia with a patient-specific 3D printed permanent tracheal splint. JAMA Otolaryngology Head and Neck Surgery, 143(5):523-525https://doi.org/10.1001/jamaoto.2016.3932
Hollister, S. J., Flanagan, C. L., Morrison, R. J., Patel, J. J., Wheeler, M. B., Edwards, S. P., & Green, G. E. (2016). Integrating image-based design and 3D biomaterial printing to create patient specific device within a design control framework for clinical translation. ACS Biomaterial Science & Engineering, 2, 1827-1836. https://doi.org/10.1021/acsbiomaterials.6b00332
Morrison, R. J., Hollister, S. J., Niedner, M. F., Park, A. H., Mehta, D. K., Ohye, R. G., & Green, G. E. (2015). Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Science Translational Medicine, 7, 285ra64. https://doi.org/10.1126/scitranslmed.3010825
Hollister, S. J., Flanagan, C. L., Zopf, D. A., Morrison, R. J., Nasser, H., Patel, J. J., Ebramzadeh, E., Sangiorio, S. N., Wheeler, M. B., & Green, G. E. (2015). Design control for clinical translation of 3D printed modular scaffolds. Annals of Biomedical Engineering, 43, 774-796.
Morrison, R. J., Kashlan, K. N., Flanagan, C. L., Wright, J. K., Green, G. E., Hollister, S. J., & Weatherwax, K. J. (2015). Regulatory considerations in the design, manufacturing, and clinical use of implantable 3D-printed medical devices. Clinical and Translational Science, 8, 594-600.
Zopf, D. A., Flanagan, C. L., Wheeler, M., Hollister, S. J., & Green, G. E. (2014). Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint. JAMA Otolaryngology-Head & Neck Surgery, 140, 66-71.
Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable three-dimensional printed airway splint. New England Journal of Medicine, vol. 368, no. 20, 2013, pp. 2043-2045. https://doi.org/10.1056/nejmc1206319
Shape Memory Polymer Development – Poly(glycerol dodecanedioate)
Ramaraju, Harsha, Annabel McAtee, Ryan Akman, Adam Verga, Michael L. Bocks, and Scott J. Hollister. (2022). Sterilization effects on poly(glycerol dodecanedioate): A biodegradable shape memory elastomer for biomedical applications. Journal of Biomedical Materials Research 2022: 1-13. https://doi.org/10.1002/jbm.b.35205.
Akman, Ryan, Harsha Ramaraju, Adam S. Verga, and Scott J. Hollister. (2022). Multimodal 3D Printing of Biodegradable Shape Memory Elastomer Resins for Patient Specific Soft Tissue Repair. Applied Materials Today 29: 101666. https://doi.org/10.1016/j.apmt.2022.101666.
Ramaraju, Harsha, Stephen R. Sferra, Stephanie M. Kunisaki, and Scott J. Hollister. (2022). Finite Element Analysis of Esophageal Atresia Repair with Biodegradable Polymer Sleeves. Journal of the Mechanics and Physics of Solids 132: 105349. https://doi.org/10.1016/j.jmbbm.2022.105349.
Akman, Ryan, Harsha Ramaraju, and Scott J. Hollister. (2021). Development of Photocrosslinked Poly(glycerol dodecanedioate)-A Biodegradable Shape Memory Polymer for 3D-Printed Tissue Engineering Applications. Advanced Engineering Materials 23: 2100219. https://doi.org/10.1002/adem.202100219.
Ramaraju, Harsha, Atif Ul-Haque, Adam S. Verga, Michael L. Bocks, and Scott J. Hollister. (2020). Modulating Nonlinear Elastic Behavior of Biodegradable Shape Memory Elastomer and Small Intestinal Submucosa (SIS) Composites for Soft Tissue Repair. Journal of the Mechanics and Physics of Solids 110: 103965. https://doi.org/10.1016/j.jmbbm.2020.103965.
Ramaraju, Harsha, Ryan Akman, Dylan L. Safranski, and Scott J. Hollister. (2020). Designing Biodegradable Shape Memory Polymers for Tissue Repair. Advanced Functional Materials 30: 2002014. https://doi.org/10.1002/adfm.202002014.
Ramaraju, Harsha, Luis D. Solorio, Michael L. Bocks, and Scott J. Hollister. (2020). Degradation Properties of a Biodegradable Shape Memory Elastomer, Poly(glycerol dodecanoate), for Soft Tissue Repair. PLoS ONE 15, no. 2: e0229112. https://doi.org/10.1371/journal.pone.0229112.
Solorio, Luis D., Michael L. Bocks, and Scott J. Hollister. (accepted). Effects of Curing Conditions on the Physicochemical and Shape Memory Properties of the Biodegradable Polymer Poly(glycerol dodecanoate). Journal of Biomedical Materials Research.
Migneco, F., Y-C. Huang, R. Birla, and Scott J. Hollister. (2009). Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 33: 6479-6484. https://doi.org/10.1016/j.biomaterials.2009.08.021
Migneco, Francesco, Scott J. Hollister, and Ravi K. Birla. (2008). Tissue-engineered heart valve prostheses: ‘state of the heart’. Regenerative Medicine 3: 399-419. https://doi.org/10.2217/17460751.3.3.399
Biomaterial 3D Printing and Multi-scale scaffold fabrication
Weisgberger, David W., Kevin Erning, Christopher L. Flanagan, Scott J. Hollister, and Brenda A. C. Harley. Evaluation of Multi-Scale Mineralized Collagen-Polycaprolactone Composites for Bone Tissue Engineering. J. Mech. Behav. Biomed. Mat. (accepted).
Pilipchuk, S. P., A. Monje, Y. Jiao, J. Hao, L. Kruger, C. L. Flanagan, S. J. Hollister, and W. V. Giannobile. (2016). Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. Advanced Healthcare Materials 5, no. 6: 676-87. https://doi.org/10.1002/adhm.201500758
Coelho, Paulo G., Scott J. Hollister, Christopher L. Flanagan, and Paulo R. Fernandes. (2015). Bioresorbable Scaffolds for Bone Tissue Engineering: Optimal Design, Fabrication, Mechanical Testing, and Scale-Size Effects Analysis. Med Eng Physics 37: 287-96. https://doi.org/10.1016/j.medengphy.2015.01.004
Park, Chan H., Hector F. Rios, Alexandra D. Taut, Maria Padial-Molina, Christopher L. Flanagan, Sergey P. Pilipchuk, Scott J. Hollister, and William V. Giannobile. (2014). Image-Based, Fiber Guiding Scaffolds: A Platform for Regenerating Tissue Interfaces. Tissue Eng. C. 20, no. 7: 533-42. https://doi.org/10.1089/ten.TEC.2013.0619
Kang, Hyun-joon, Scott J. Hollister, Francesco LaMarca, Pablo C. Park, and Cheng-Yu Lin. (2013). Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization with Laser Sintering. J. Biomech. Eng. 135. https://doi.org/10.1115/1.4025102
Saito, Eiji, David Suarez-Gonzalez, Rahul R. Rao, John P. Stegemann, William Murphy, and Scott J. Hollister. (2013). Use of Micro-Computed Tomography to Non-Destructively Characterize Biomineral Coatings on Solid Freeform Fabricated Poly(L-lactic Acid) and Poly(epsilon-caprolactone) Scaffolds in Vitro and in Vivo. Tissue Eng. C. 19, no. 7: 507-17. https://doi.org/10.1089/ten.TEC.2012.0495
Suarez-Gonzalez, Daniel, Kaitlin Barnhart, Francesco Migneco, Christopher Flanagan, Scott J. Hollister, and William L. Murphy. (2012). Controllable Mineral Coatings on PCL Scaffolds as Carriers for Growth Factor Release. Biomaterials 33, no. 3: 713-21 https://doi.org/10.1016/j.biomaterials.2011.09.095
Lin, Cheng-Yu, Thomas Wirtz, Francesco LaMarca, and Scott J. Hollister. (2007). Structural and Mechanical Evaluations of a Topology Optimized Titanium Interbody Fusion Cage Fabricated by Selective Laser Melting Process. J. Biomed. Mater. Research 83A, no. 1: 272-79. https://doi.org/10.1002/jbm.a.31231
Partee, Benjamin, Scott J. Hollister, and Suman Das. (2006). Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA 6501 Polycaprolactone Bone Tissue Engineering Scaffolds. ASME J. of Manufacturing Science Eng. 128, no. 2: 531-40. https://doi.org/10.1115/1.2162589
Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., and Das, S. (2005). Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26: 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
Taboas, J.M., Maddox, R.D., Krebsbach, P.H., and Hollister, S.J. (2003). Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds. Biomaterials 24: 181-194. https://doi.org/10.1016/S0142-9612(02)00276-4
Biofactor Delivery (Cells, Drugs, Growth Factors) from 3D Designed Scaffolds
Rasperini, G., Pilipchuk, S. P., Flanagan, C. L., Park, C. H., Pagni, G., Hollister, S. J., & Giannobile, W. V. (2015). 3D-printed Bioresorbable Scaffold for Periodontal Repair. Journal of dental research, 94(9 Suppl), 153S–7S. https://doi.org/10.1177/0022034515588303
Patel, J. J., Modes, J. E., Flanagan, C. L., Krebsbach, P. H., Edwards, S. P., & Hollister, S. J. (2015). Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps. Tissue engineering. Part C, Methods, 21(9), 889–897. https://doi.org/10.1089/ten.TEC.2014.0643
Patel, J. J., Flanagan, C. L., & Hollister, S. J. (2015). Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios. Tissue engineering. Part C, Methods, 21(5), 489–498. https://doi.org/10.1089/ten.TEC.2014.0377
Saito, E., Suarez-Gonzalez, D., Murphy, W. L., & Hollister, S. J. (2015). Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Advanced healthcare materials, 4(4), 621–632. https://doi.org/10.1002/adhm.201400424
Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ. Computer Aided–Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds for Craniofacial Soft Tissue Reconstruction. Otolaryngology–Head and Neck Surgery. 2015;152(1):57-62. doi:https://doi.org/10.1177/0194599814552065
Suárez-González, D., Lee, J. S., Diggs, A., Lu, Y., Nemke, B., Markel, M., Hollister, S. J., & Murphy, W. L. (2014). Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. Tissue engineering. Part A, 20(15-16), 2077–2087. https://doi.org/10.1089/ten.tea.2013.0358
Choi, S., Yu, X., Jongpaiboonkit, L., Hollister, S. J., & Murphy, W. L. (2013). Inorganic coatings for optimized non-viral transfection of stem cells. Scientific reports, 3, 1567. https://doi.org/10.1038/srep01567
Jeong, C. G., Zhang, H., & Hollister, S. J. (2012). Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. Journal of biomedical materials research. Part A, 100(8), 2088–2096. https://doi.org/10.1002/jbm.a.33249
Suárez-González, D., Barnhart, K., Migneco, F., Flanagan, C., Hollister, S. J., & Murphy, W. L. (2012). Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials, 33(2), 713–721. https://doi.org/10.1016/j.biomaterials.2011.09.095
Jeong, C. G., & Hollister, S. J. (2010). A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 31(15), 4304–4312. https://doi.org/10.1016/j.biomaterials.2010.01.145
Zhang, H., Lin, C. Y., & Hollister, S. J. (2009). The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials, 30(25), 4063–4069. https://doi.org/10.1016/j.biomaterials.2009.04.015
Zhang, H., & Hollister, S. (2009). Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. Journal of biomaterials science. Polymer edition, 20(14), 1975–1993. https://doi.org/10.1163/156856208X396074
Hu, W. W., Elkasabi, Y., Chen, H. Y., Zhang, Y., Lahann, J., Hollister, S. J., & Krebsbach, P. H. (2009). The use of reactive polymer coatings to facilitate gene delivery from poly (epsilon-caprolactone) scaffolds. Biomaterials, 30(29), 5785–5792. https://doi.org/10.1016/j.biomaterials.2009.06.041
Hu, W. W., Wang, Z., Hollister, S. J., & Krebsbach, P. H. (2007). Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene therapy, 14(11), 891–901. https://doi.org/10.1038/sj.gt.3302940
Lin, C. Y., Schek, R. M., Mistry, A. S., Shi, X., Mikos, A. G., Krebsbach, P. H., & Hollister, S. J. (2005). Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue engineering, 11(9-10), 1589–1598. https://doi.org/10.1089/ten.2005.11.1589
Schek, R. M., Hollister, S. J., & Krebsbach, P. H. (2004). Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 9(1), 130–138. https://doi.org/10.1016/j.ymthe.2003.10.002
Schek, R. M., Taboas, J. M., Hollister, S. J., & Krebsbach, P. H. (2005). Tissue engineering osteochondral implants for temporomandibular joint repair. Orthodontics & craniofacial research, 8(4), 313–319. https://doi.org/10.1111/j.1601-6343.2005.00354.x
Surgical/Procedure Planning Modeling
Gillespie, A. I., Shelly, S., Tucker, S. J., Hollister, S. J., Tkaczuk, A., & Klein, A. (2022). Development and Validation of a 3-Dimensional Flexible Laryngoscopy Training Simulator. Journal of Modeling and Simulation of Materials, 5(1), 1-6. https://doi.org/10.21467/jmsm.5.1.1-6
VanKoevering, K. K., Hollister, S. J., & Green, G. E. (2017). Advances in 3-dimensional printing in otolaryngology: a review. JAMA Otolaryngology–Head & Neck Surgery, 143(2), 178-183. 10.1001/jamaoto.2016.3002
VanKoevering, K. K., Morrison, R. J., Prabhu, S. P., Torres, M. F. L., Mychaliska, G. B., Treadwell, M. C., … & Green, G. E. (2015). Antenatal three-dimensional printing of aberrant facial anatomy. Pediatrics, 136(5), e1382-e1385. https://doi.org/10.1542/peds.2015-1062
Mechanical and Biotransport Testing and Modeling of Tissues and Biomaterials
Verga, A. S., Tucker, S. J., Gao, Y., Plaskett, A. M., & Hollister, S. J. (2022). Nonlinear Viscoelastic Properties of 3D-Printed Tissue Mimicking Materials and Metrics to Determine the Best Printed Material Match to Tissue Mechanical Behavior. Frontiers in Mechanical Engineering, 8, 862375. https://doi.org/10.3389/fmech.2022.862375
Solorio, L.D., Bocks, M.L., & Hollister, S.J. Effects of Curing Conditions on the Physicochemical and Shape Memory Properties of the Biodegradable Polymer Poly(glycerol Dodecanoate). J. Biomed. Mater. Res. A (accepted).
Zopf, D. A., Flanagan, C. L., Nasser, H. B., Mitsak, A. G., Huq, F. S., Rajendran, V., … & Hollister, S. J. (2015). Biomechanical evaluation of human and porcine auricular cartilage. The Laryngoscope, 125(8), E262-E268. https://doi.org/10.1002/lary.25040
Coelho, P. G., Hollister, S. J., Flanagan, C. L., & Fernandes, P. R. (2015). Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis. Medical engineering & physics, 37(3), 287-296. https://doi.org/10.1016/j.medengphy.2015.01.004
Dias, M. R., Guedes, J. M., Flanagan, C. L., Hollister, S. J., & Fernandes, P. R. (2014). Optimization of scaffold design for bone tissue engineering: A computational and experimental study. Medical engineering & physics, 36(4), 448-457. https://doi.org/10.1016/j.medengphy.2014.02.010
Winterroth, F., Hollman, K. W., Kuo, S., Ganguly, A., Feinberg, S. E., Fowlkes, J. B., & Hollister, S. J. (2013). Characterizing morphology and nonlinear elastic properties of normal and thermally stressed engineered oral mucosal tissues using scanning acoustic microscopy. Tissue Engineering Part C: Methods, 19(5), 345-351. https://doi.org/10.1089/ten.tec.2012.0467
Mitsak, A. G., Dunn, A. M., & Hollister, S. J. (2012). Mechanical characterization and non-linear elastic modeling of poly (glycerol sebacate) for soft tissue engineering. Journal of the mechanical behavior of biomedical materials, 11, 3-15. https://doi.org/10.1016/j.jmbbm.2011.11.003
Jeong, C. G., Zhang, H., & Hollister, S. J. (2011). Three-dimensional poly (1, 8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Acta biomaterialia, 7(2), 505-514. https://doi.org/10.1016/j.actbio.2010.08.027
Jeong, C. G., & Hollister, S. J. (2010). Mechanical and biochemical assessments of three-dimensional poly (1, 8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Engineering Part A, 16(12), 3759-3768. https://doi.org/10.1089/ten.tea.2010.0103
Kang, H., Park, P., La Marca, F., Hollister, S. J., & Lin, C. Y. (2010). Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study. Neurosurgical Focus, 28(6), E9. https://doi.org/10.3171/2010.3.FOCUS1046 .
Kang, H., Lin, C. Y., & Hollister, S. J. (2010). Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Structural and Multidisciplinary Optimization, 42, 633-644. https://doi.org/10.1007/s00158-010-0508-8
Kemppainen, J. M., & Hollister, S. J. (2010). Tailoring the mechanical properties of 3D‐designed poly (glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 94(1), 9-18. https://doi.org/10.1002/jbm.a.32653
Jeong, C. G., & Hollister, S. J. (2010). Mechanical, permeability, and degradation properties of 3D designed poly (1, 8 octanediol‐co‐citrate) scaffolds for soft tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(1), 141-149. https://doi.org/10.1002/jbm.b.31568
Kemppainen, J. M., & Hollister, S. J. (2010). Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials, 31(2), 279-287. https://doi.org/10.1016/j.biomaterials.2009.09.041
Migneco, F., Huang, Y. C., Birla, R. K., & Hollister, S. J. (2009). Poly (glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials, 30(33), 6479-6484. https://doi.org/10.1016/j.biomaterials.2009.08.021
Kim, K., Jeong, C. G., & Hollister, S. J. (2008). Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta biomaterialia, 4(4), 783-790. https://doi.org/10.1016/j.actbio.2008.02.010
Hollister, S. J., & Lin, C. Y. (2007). Computational design of tissue engineering scaffolds. Computer methods in applied mechanics and engineering, 196(31-32), 2991-2998. https://doi.org/10.1016/j.cma.2006.09.023
Guldberg, R. E., Hollister, S. J., & Charras, G. (1998). The accuracy of digital image-based finite element models. Journal of Biomechanical Engineering, 120, 289-295. https://doi.org/10.1115/1.2798314
Zysset, P. K., Goulet, R. W., & Hollister, S. J. (1998). A global relationship between trabecular morphology and homogenized elastic properties. Journal of Biomechanical Engineering, 120, 640-646. https://doi.org/10.1115/1.2834756
Hollister, S. J., Taylor, J. E., & Washabaugh, P. D. (1997). Finite strain elastostatics with stiffening materials: A constrained minimization model. Journal of Applied Mechanics, 64, 440-442. https://doi.org/10.1115/1.2787333
Hollister, S. J., & Kikuchi, N. (1994). Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnology and bioengineering, 43(7), 586-596. https://doi.org/10.1002/bit.260430708.
Hollister, S. J., Brennan, J. M., & Kikuchi, N. (1994). A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. Journal of biomechanics, 27(4), 433-444. https://doi.org/10.1016/0021-9290(94)90019-1
Hollister, S. J., & Kikuchi, N. (1992). A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational mechanics, 10(2), 73-95. https://doi.org/10.1007/BF00369853